Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Crit Care ; 26(1): 338, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2108872

RESUMEN

We conducted a proof of concept study where Anapnoguard endotracheal tubes and its control unit were used in 15 patients with COVID-19 acute respiratory distress syndrome. Anapnoguard system provides suction, venting, rinsing of subglottic space and controls cuff pressure detecting air leakage through the cuff. Alpha-amylase and pepsin levels, as oropharyngeal and gastric microaspiration markers, were assessed from 85 tracheal aspirates in the first 72 h after connection to the system. Oropharyngeal microaspiration occurred in 47 cases (55%). Episodes of gastric microaspiration were not detected. Patient positioning, either prone or supine, did not affect alpha-amylase and pepsin concentration in tracheal secretions. Ventilator-associated pneumonia (VAP) rate was 40%. The use of the AG system provided effective cuff pressure control and subglottic secretions drainage. Despite this, no reduction in the incidence of VAP has been demonstrated, compared to data reported in the current COVID-19 literature. The value of this new technology is worth of being evaluated for the prevention of ventilator-associated respiratory tract infections.


Asunto(s)
COVID-19 , Neumonía Asociada al Ventilador , Síndrome de Dificultad Respiratoria , Humanos , Unidades de Cuidados Intensivos , Pepsina A , Pronación , Diseño de Equipo , Neumonía Asociada al Ventilador/etiología , Intubación Intratraqueal/efectos adversos , alfa-Amilasas
2.
Eur J Pharm Biopharm ; 155: 103-111, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-837756

RESUMEN

The harsh conditions of the gastro-intestinal (GI) milieu pose a major barrier to the oral delivery of protein nanocages. Here we studied the stability of Nudaurelia capensis omega virus (NωV) virus-like particles (VLPs) in simulated GI fluids. NωV VLPs capsids and procapsids were transiently expressed in plants, the VLPs were incubated in various simulated GI fluids and their stability was determined by gel electrophoresis, density gradient ultracentrifugation and transmission electron microscopy (TEM). The results showed that the capsids were highly resistant to simulated gastric fluids at pH ≥ 3. Even under the harshest conditions, which consisted of a pepsin solution at pH 1.2, NωV capsids remained assembled as VLPs, though some digestion of the coat protein occurred. Moreover, 80.8% (±10.2%) stability was measured for NωV capsids upon 4 h incubation in simulated intestinal fluids. The high resistance of this protein cage to digestion and denaturation can be attributed to its distinctively compact structure. The more porous form of the VLPs, the procapsid, was less stable under all conditions. Our results suggest that NωV VLPs capsids are likely to endure transit through the GI tract, designating them as promising candidate protein nanocages for oral drug delivery.


Asunto(s)
Cápside/metabolismo , Virus de Insectos , Nanopartículas , Plantas/metabolismo , Virus ARN , Animales , Líquidos Corporales , Proteínas de la Cápside/biosíntesis , Centrifugación por Gradiente de Densidad , Sistemas de Liberación de Medicamentos , Tracto Gastrointestinal/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Transmisión , Pepsina A/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA